Linux /initrd and its architecture!
Guide outline
- 1.1. Overview
- 1.2. The Root Directory
- 1.3. /bin
- 1.4. /boot
- 1.5. /dev
- 1.6. /etc
- 1.7. /home
- 1.8. /initrd
- 1.9. /lib
- 1.10. /lost+found
- 1.11. /media
- 1.12. /mnt
- 1.13. /opt
- 1.14. /proc
- 1.15. /root
- 1.16. /sbin
- 1.17. /usr
- 1.18. /var
- 1.19. /srv
- 1.20. /tm
- 2. Glossary
Additional Linux Resources
Here is a list of resources for learning Linux:
Resources for System Administrators
Linux System Admin Guide- What is Linux Operating System and how it works
Linux System Admin Guide- What are Directory Tree and Filesystem Hierarchy in Linux
Linux System Admin Guide- Introduction to Linux File Systems for System Admins
Linux System Admin Guide- Overview of Linux Virtual Memory and Disk Buffer Cache
Linux System Admin Guide- Best Practices for Monitoring Linux Systems
Linux System Admin Guide- Best Practices for Performing Linux Boots and Shutdowns
Linux System Admin Guide- Best Practices for Making and Managing Backup Operations
Resources for Linux Kernel Programmers
How Linux Operating System Memory Management works
Comprehensive Review of Linux Kernel Operating System Processes
Comprehensive Review of Linux File System Architecture and Management
What are mechanisms behind Linux Kernel task management
How Linux Kernel Sources and Functions work
Comprehensive look at how Linux Data Structures work
Hands-on Linux classes
- Linux shell and bash scripting via hybrid training
- Hands-on Linux programming for system administration via hybrid training
- Live and self-paced SQL coding and database management
- Introduction to Linux OS
- Intro to Linux Bash Scripting
- Advance Linux Bash Scripting
- Linux Management for System Admins
- Essential Linux Commands in 6 Hours by Hands-on Exercises
- Linux Bash & Shell Scripts in 6 Hour by Hands-on Exercises
Linux Operating System Distributions
Comprehensive list of all Linux OS distributions
Comprehensive list of all special purpose Linux distributions
Comprehensive list of all secure Linux distributions for cybersecurity professionals
One-to-One Live Linux Classes
Coding Bootcamps school offers One-to-One Live Linux Classes for Beginners.
1.8. /initrd
initrd provides the capability to load a RAM disk by the boot loader. This RAM disk can then be mounted as the root file system and programs can be run from it. Afterwards, a new root file system can be mounted from a different device. The previous root (from initrd) is then moved to a directory and can be subsequently unmounted. initrd is mainly designed to allow system startup to occur in two phases, where the kernel comes up with a minimum set of compiled-in drivers, and where additional modules are loaded from initrd. Operation --------- When using initrd, the system typically boots as follows: 1) the boot loader loads the kernel and the initial RAM disk 2) the kernel converts initrd into a "normal" RAM disk and frees the memory used by initrd 3) initrd is mounted read-write as root 4) /linuxrc is executed (this can be any valid executable, including shell scripts; it is run with uid 0 and can do basically everything init can do) 5) linuxrc mounts the "real" root file system 6) linuxrc places the root file system at the root directory using the pivot_root system call 7) the usual boot sequence (e.g. invocation of /sbin/init) is performed on the root file system 8) the initrd file system is removed Note that changing the root directory does not involve unmounting it. It is therefore possible to leave processes running on initrd during that procedure. Also note that file systems mounted under initrd continue to be accessible. Usage scenarios --------------- The main motivation for implementing initrd was to allow for modular kernel configuration at system installation. The procedure would work as follows: 1) system boots from floppy or other media with a minimal kernel (e.g. support for RAM disks, initrd, a.out, and the Ext2 FS) and loads initrd 2) /linuxrc determines what is needed to (1) mount the "real" root FS (i.e. device type, device drivers, file system) and (2) the distribution media (e.g. CD-ROM, network, tape, ...). This can be done by asking the user, by auto-probing, or by using a hybrid approach. 3) /linuxrc loads the necessary kernel modules 4) /linuxrc creates and populates the root file system (this doesn't have to be a very usable system yet) 5) /linuxrc invokes pivot_root to change the root file system and execs - via chroot - a program that continues the installation 6) the boot loader is installed 7) the boot loader is configured to load an initrd with the set of modules that was used to bring up the system (e.g. /initrd can be modified, then unmounted, and finally, the image is written from /dev/ram0 or /dev/rd/0 to a file) 8) now the system is bootable and additional installation tasks can be performed The key role of initrd here is to re-use the configuration data during normal system operation without requiring the use of a bloated "generic" kernel or re-compiling or re-linking the kernel. A second scenario is for installations where Linux runs on systems with different hardware configurations in a single administrative domain. In such cases, it is desirable to generate only a small set of kernels (ideally only one) and to keep the system-specific part of configuration information as small as possible. In this case, a common initrd could be generated with all the necessary modules. Then, only /linuxrc or a file read by it would have to be different. A third scenario are more convenient recovery disks, because information like the location of the root FS partition doesn't have to be provided at boot time, but the system loaded from initrd can invoke a user-friendly dialog and it can also perform some sanity checks (or even some form of auto-detection). Last not least, CD-ROM distributors may use it for better installation from CD, e.g. by using a boot floppy and bootstrapping a bigger RAM disk via initrd from CD; or by booting via a loader like LOADLIN or directly from the CD-ROM, and loading the RAM disk from CD without need of floppies. |